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ABSTRACT
Studies regarding deforestation, the hydrological cycle, climate change and fire weather can benefit from the detailed simulations 
provided by regional climate models (RCM). While much attention has been given to fire activity in the Amazon, few studies 
have used RCM runs to assess fire risk and variables associated to fire occurrence. We evaluated precipitation, temperature 
and a fire risk index from the ensemble of Eta model simulations coupled with three different global climate models for the 
Amazon basin. The RCM runs were compared to reanalysis data for the dry season from 1979 to 2005. The maximum and 2-m 
temperature fields were underestimated over the entire region, but showed a statistically significant spatial correlation with the 
reference data. Precipitation was overestimated over the Amazon, in accordance with the major sources of moisture analyzed. 
The Keetch-Byram drought index (KBDI) was not significantly affected by the bias found in temperature and precipitation, 
and the ensemble improved relative to the individual member simulations. KBDI estimations performed better with the 
ensemble of the three evaluated members, however the Eta model showed some limitations. The validation of modeled fire 
risk could benefit from the use of satellite hotspot data. Furthermore, the KBDI can also be used in the assessment of how 
climate change interacts with fire activity in the Amazon region. 
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Modelagem climática regional na bacia Amazônica para avaliação do risco 
de fogo
RESUMO
Estudos sobre desmatamento, ciclo hidrológico, mudanças climáticas e fogo podem se beneficiar de simulações mais detalhadas 
provenientes de modelos climáticos regionais (RCM). Apesar de que a atividade do fogo na Amazônia tenha recebido grande 
atenção, poucos estudos usaram simulações de RCM para avaliar o risco de fogo e variáveis associadas às condições climáticas 
favoráveis à ocorrência de fogo. Aqui avaliamos precipitação, temperatura e um índice de risco de fogo do conjunto de 
simulações do modelo Eta forçado para três modelos climáticos globais diferentes para a bacia Amazônica. As simulações de 
RCM foram comparadas com dados de reanálise para a estação seca de 1979 a 2005. Os campos de temperatura máxima e 
de 2 m foram subestimados em toda a região, porém mostraram uma correlação espacial estatisticamente significativa com os 
dados de referência. A precipitação foi superestimada para toda a Amazônia, em acordo com as principais fontes de umidade 
analisadas. O índice de seca de Keetch-Byram (KBDI) não foi significativamente afetado pelo viés observado na temperatura 
e na precipitação, e o conjunto apresentou resultados melhores em comparação com as simulações dos membros individuais. 
As simulações de KBDI tiveram melhor resultado com o conjunto das três variáveis avaliadas, porém o modelo Eta mostrou 
algumas limitações. A validação dos modelos de risco de fogo poderia se beneficiar do uso de dados de hotspot satelitais. Além 
disso, o KBDI pode ser usado na avaliação de como as mudanças climáticas interagem com o fogo na região amazônica.

PALAVRAS-CHAVE: KBDI, modelo Eta, validação de modelo, downscaling climático
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INTRODUCTION
Global climate models (GCM) are a powerful tool for 

simulation of present and future climate. In order to function 
on a global scale, GCMs generally simulate the climate on 
a horizontal grid of 100-200 km, not allowing to represent 
some land, land-use, land-ocean and urban features, among 
others (Ambrizzi et al. 2019). Thus, a GCM has limitations 
such as the inability to simulate at a high level of detail, the lack 
of representation of small-scale processes and detailed near-
surface variables (Cabré et al. 2014). One way of surpassing 
this limitation is to use a regional climate model (RCM) with 
increased spatial resolution over a smaller domain, forcing it 
with lateral boundary conditions given by GCMs (Dickinson 
et al. 1989). Therefore, RCMs can be used as a multipurpose 
tool for studies that need a higher horizontal resolution (Xuejie 
et al. 2001; Campbell et al. 2011; Karmalkar et al. 2011; Van 
Oldenborgh et al. 2013; De Jong et al. 2019). 

Due to their resolution, RCMs are expected to be able to 
represent meso-scale events. The detailed simulation can better 
represent the spatial and temporal variation of meteorological 
variables, such as short-duration phenomena, extreme events, 
small-scale events, cumulus convection, cloud-radiation 
forcing, and the influence of orography, land-sea and other 
surface interactions (Wang et al. 2004; Rummukainen et 
al. 2016). In the Amazon, regional models have already 
been used to validate the present climate (Chou et al. 2012; 
Builes-Jaramillo and Pántano 2021), to simulate the effects 
of deforestation on regional circulation (Ruiz-Vásquez et al. 
2020; De Sales et al. 2020) and the hydrological cycle (Gomes 
et al. 2020), as well as to study climate change (Llopart et al. 
2014; Rocha et al. 2015). Detailed simulations of precipitation 
and temperature can improve the quality of the assessment 
of changes in climate and the hydrological cycle through 
representation of changes in regional circulation (Ambrizzi 
et al. 2019). However, while there are some studies for fire 
weather and fire risk on a global scale (Liu et al. 2010; Fonseca 
et al. 2019; Gannon and Steinberg 2021), there is a lack of 
such studies on a regional scale, including the Amazon region. 
In the face of climate change scenarios, favorable conditions 
for fire occurrence may increase in the Amazon basin 
(Marengo et al. 2018; Vogel et al. 2020). This is particularly 
important since the Amazon rainforest stores 86 Pg carbon, 
and almost 80% of this biomass is above ground (Saatchi et 
al. 2007). When burned, the Amazon rainforest becomes a 
significant source of carbon for the atmosphere (Nobre and 
Borma 2009; Balch 2014; Gatti et al. 2021). Therefore, it 
is essential to understand the relationship between climate 
conditions and fire in the Amazon.

The vulnerability of the Amazon Forest to fires is enhanced 
by drought events (Aragão et al. 2014), and this impact has 
been exacerbated over the years (Anderson et al. 2018). 
Drought events have a direct impact on carbon emission, 

which was observed in the 2010, 2015 and 2016 droughts, 
when anomalous fires in the Amazon were responsible for a 
combined emission of 0.74 Pg CO2 (Silva Junior et al. 2019). 
Moreover, the high spatial variability in precipitation during 
the drought season affects the distribution of fires in the 
Amazon basin (Carvalho et al. 2021). As climate change is 
further affecting precipitation variability and fire occurrence in 
the Amazon, it becomes increasingly necessary to understand 
fire dynamics and how it affects the accuracy of simulated fire 
risk on the regional scale, to understanding the uncertainties 
that climate models may carry to future climate scenarios.

We aimed to evaluate the physical processes related to 
optimal meteorological conditions for fire occurrence in the 
Amazon basin and the applicability of one fire risk index for 
climate change studies from the regional Eta climate model 
driven by three global climate models. We estimated the errors 
and uncertainties of simulations for the present climate during 
the Amazonian dry period (July, August and September), as 
well as the model’s ability to represent the fire risk index.

MATERIAL AND METHODS
Study region

The Amazon basin is the largest hydrographic basin in 
the world, covering approximately 6.2 million km2 and 
encompasses about 40% of the Brazilian territory, as well 
as parts of Bolivia, Colombia, Ecuador, Guyana, French 
Guiana, Peru, Suriname and Venezuela. The average annual 
accumulated rainfall in the region is approximately 2,300 
mm year-1 and average temperatures vary between 24 °C 
and 26 °C, with low thermal amplitude throughout the year 
(Fisch et al. 1998). One of the defining characteristics of the 
region is the high spatial and temporal variability of rainfall 
(Sombroek 2001; Espinoza-Villar et al. 2009), due to the 
atmospheric systems that act over the region, such as the 
intertropical convergence zone (Mehta 1998; Wang and Fu 
2007), the South Atlantic convergence zone (Kodama 1992), 
the Bolivian high (Lenters and Cook 1997), the Pacific decadal 
oscillation and the El Nino-Southern Oscillation (Marengo 
2004; Espinoza-Villar et al. 2009).

Regional circulation model
The regional climate model used for this study was the 

Eta model (Black 1994). One of the main features of the 
Eta regional model is the Eta vertical coordinate (η), defined 
by Mesinger (1984), which reduces the error in calculations 
near steep surfaces of variables such as the strength of the 
pressure gradient, advective processes and horizontal diffusion 
(Dereczynski et al. 2000). The Eta model uses Arakawa’s 
E-type horizontal grid (Arakawa and Lamb 1977) and, for 
this study, it was configured with a horizontal resolution of 
20 km and 38 vertical levels.
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For the simulations, the Eta model used the parametrization 
of turbulent diffusion in the planetary boundary layer 
proposed by  Mellor and Yamada (1974). Shortwave 
radiation (Fels and Schwarzkopf 1975) and longwave radiation 
(Lacis and Hansen 1974) parametrizations are present. In 
addition, cumulus parametrization using the Betts-Miller-
Janjic scheme (Janjić 1994) and cloud microphysics (Zhao et 
al. 1997) are used to simulate precipitation. Land processes 
are represented by the NOAH land surface model (LSM) (Ek 
et al. 2003). The NOAH model uses four soil layers, 13 
vegetation covers and nine different soil types (Hogue et al. 
2005). Since the surface layer of the LSM is a combination of 
the soil and vegetation surface, it is not possible to explicitly 
calculate some variables such as canopy temperature, carbon 
fluxes and photosynthetically radiation. However, the LSM 
has been fitted with various enhancements throughout the 
years, for canopy conductance soil evaporation, vegetation 
phenology, surface runoff, infiltration and others (Ek et al. 
2003 and references therein). For this simulation, the category 
of broadleaf-evergreen tree was used to represent the tropical 
forest, and cultivations to represent deforested areas.

To perform the simulations, the Eta regional model 
was adapted to use the monthly averages of sea surface 
temperature (SST) provided by the earth system models 
(BESM, HadGEM2-ES and MIROC5), to use a 360-day year 
calendar, in order for the Eta model to be compatible with 
the HadGEM2-ES lateral boundary conditions.

Earth system models
The Brazilian Earth System Model (BESM) is an 

earth system model built from a national effort aimed at 
understanding global climate change, its causes, effects, and 
impacts on society (Nobre et al. 2013; Capistrano et al. 2020).  
It was set up at a horizontal resolution of approximately 200 
km and 28 vertical levels. In order to represent atmospheric and 
land surface processes, BESM uses the Brazilian Atmospheric 
Model (BAM) (Figueroa et al. 2016) and the Simplified Simple 
Biosphere Model - SSiB (Xue et al. 2001), respectively. The 
shortwave radiation calculation is based on the CLIRAD-
SW-M model (Tarasova et al. 2007), and the Harshvardhan 
et al. (1987) scheme calculates the longwave radiation. The 
cloud interaction is based on the scheme described in Slingo 
(1987), Hou (1990) and Kinter et al. (1997).

The UK Met Office Hadley Centre Global Environmental 
Model, version 2 (HadGEM2-ES) is an earth system model 
(Collins et al. 2011). The horizontal resolution of the 
atmospheric component is N96, approximately 1.875° x 
1.25°, with 38 vertical levels. The global dynamic vegetation 
model TRIFFID (top-down representation of interactive 
foliage including dynamics) (Cox 2001) was used to describe 
the terrestrial vegetation and carbon cycle. Oceanic biological 
and chemical processes were represented by the DiatHadOCC 
model (Halloran et al. 2010). The UKCA model (United 

Kingdom Chemistry and Aerosol model) was used to calculate 
the chemistry of the troposphere.

The Model for Interdisciplinary Research on Climate 
(MIROC), version 5 is described in detail by Watanabe et al. 
(2010). The atmospheric spectral component of the model 
has T85 resolution, which corresponds to approximately 
150 km horizontally and has 40 vertical levels. The ocean 
coupling was performed using the COCO 4.5 model, which 
has 1° of resolution horizontally and 50 depth levels. The 
radiative transfers are calculated using the k distribution 
scheme (Sekiguchi and Nakajima 2008). The model has a 
cloud microphysics scheme that is coupled with the radiation 
scheme, and is called SPRINTARS. To represent surface 
processes MIROC5 uses the MATSIRO scheme (Takata et 
al. 2003).

Model description and simulation strategy
In this study, the Eta regional climate model, nested with 

three different earth system models (ESMs), was used to 
simulate the present climate. The three runs were performed 
for the period 1960 to 2005, using the initial and boundary 
conditions of the Brazilian Earth System Model (BESM), 
the UK Met Office Hadley Centre Global Environmental 
Model (HadGEM2-ES) and the model for Interdisciplinary 
Research on Climate (MIROC5). This Eta configuration with 
Coupled Model Intercomparison Project Phase 5(CMIP5) 
models was chosen as it has already assessed South America’s 
historical climate (Chou et al. 2014) and also was used in 
climate change assessments (Brito et al. 2022). The models 
ran continuously throughout the 45 years, initiating at 
00:00 GMT of January 1st, 1960, in 10-minute time-steps. 
Precipitation and temperature were given by the model in 
6-hour frequency, and later re-calculated to a daily scale. 
Levels of CO2 were fixed at 330 ppm. The vegetation map 
used in the Eta model was obtained from the ProVeg project 
(Sestini et al. 2002), and updated with deforestation data for 
the base year of 2015 from Projeto de Monitoramento do 
Desmatamento da Floresta Amazônica Brasileira por Satélite 
– PRODES (INPE 2023).

Fire risk index
The Keetch-Byram drought index (KBDI) was used to 

estimate soil moisture through precipitation and maximum 
daily temperature. Since soil moisture deficiency and droughts 
can influence the flammability of vegetation, the KBDI is 
used as a tool for identifying dry areas that are susceptible 
to the occurrence of wildfires (Keetch and Byram 1968). 
The KBDI has been applied in tropical areas (Dolling et al. 
2005; Taufik et al. 2015) and specifically in the Amazon 
biome, with statistically significant results for predicting fire 
occurrence (Nogueira et al. 2017; Cavalcante et al. 2021). The 
main advantage of using this index is that it only requires two 
meteorological variables (daily maximum temperature and 
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daily precipitation). It gives values ranging from 0, when there 
is no soil moisture deficiency, to 800, which denotes absolute 
soil moisture deficiency (Heim 2002). KBDI values correlate 
to fire risk in a scale where values from 0 to 200 correspond 
to low risk, 200 to 400 to moderate risk, 400 to 600 to high 
risk, and 600 to 800 to very high risk (Liu et al. 2010). 

The KBDI is calculated according to equations 1 and 
2, with variables expressed following the international unit 
system (Crane 1982):

KBDIt = KBDIt -1+ dQ - dP   [1]

 [2]

where dP is the daily precipitation (mm), dQ is the drought 
factor (mm), KBDI is the moisture deficiency in mm, T 
is the maximum daily temperature (°C), dt is the time 
variation, which equals to one day, and R is the average annual 
precipitation in mm.

Observed data and model validation
The NOAA Climate Prediction Center’s (CPC) 

precipitation and maximum temperature dataset (Xie et al. 
2010) was used to assess the ensemble of the Eta simulations 
with an integration period of 1979-2005, as the CPC dataset 
begins on January 1979. The CPC dataset is available at a 
regular spatial resolution of 0.50 x 0.50 degrees. The KBDI, 
which was calculated with precipitation and maximum 
temperature simulated by the Eta model, was compared 
against the KBDI calculated by the same variables from the 
CPC dataset. Similarly, the simulated near-surface temperature 
was evaluated using the European Centre for Medium-Range 
Weather Forecasts (ECMWF) ERA5 monthly reanalysis data 
at 0.25 degrees (Hersbach et al. 2020). Maximum temperature 
was chosen for validation of the regional model because it 
is one of the most important meteorological variables for 

fire occurrence. Precipitation was evaluated as it is a natural 
barrier against fire occurrence and spread. Also, in order 
to understand how well the model simulates long periods 
without precipitation and how it impacts the fire risk, we also 
calculated the number of consecutive dry days (CDD) with 
a 1mm precipitation threshold. The validation took place 
over the dry period (July, August and September), using a 
three-member ensemble (Eta-BESM, Eta-HadGEM2-ES, 
Eta-MIROC5). For comparison, the bias method was used 
on mean values and, in order to evaluate the pattern between 
the reference and simulations, the Taylor diagram (Taylor 
2001) was used.

RESULTS
Near-surface temperature

The southern part of the Amazon basin is the area 
where the models simulated the warmest temperature at 
2 m. However, the ensemble models also show a cold bias 
in the northern and western areas of the basin (Figure 1a). 
The positive bias was mainly due to the Eta-BESM run 
(Supplementary Material, Figure S1a), which overestimated 
the temperature in the entire basin with the exception of the 
Andes region. On the other hand, Eta-MIROC5 presented 
the greatest cold bias among the members of the ensemble, 
although Eta-HadGEM2-ES also demonstrates a cold bias for 
the northern, western and central regions of the Amazon basin 
(Supplementary Material, Figures S1b and S1c, respectively). 
The Taylor diagram shows that all simulations of the Eta model 
are very close to each other (Figure 1b), indicating that, even 
when forced with different initial and boundary conditions, all 
simulations result in a very close temperature pattern output. 
In addition, the simulations showed high spatial correlation 
with the reference data, the highest for the Eta-HadGEM2-ES 
simulation (0.97). The ensemble correlation (0.96) was the 

Figure 1. A – Near-surface temperature bias (°C) from ERA5 versus the ensemble for the dry period (July, August and September) in the Amazon basin from 1979 
to 2005. Dotted regions are statistically significant at a 95% confidence level. B – Taylor diagram of the near-surface temperature (°C) for the dry period (July, August 
and September) in the Amazon basin from 1979 to 2005. The points from 1 to 4 are the different climate simulations and the red star is the reference data. This figure 
is in color in the electronic version..
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second best, showing an improvement over the Eta-BESM 
and Eta-MIROC5 runs.

Maximum temperature
The ensemble’s cold bias is present throughout the study 

area (Figure 2a), i.e., the simulations tended to underestimate 
the maximum temperature in the dry period. The cold bias 
was lowest in the southeast and northwest of the basin and, 
consequently, the uncertainty in the simulation is greater there. 
The Eta model also produced a significant cold bias in the region 
near the Andes. While the Eta-BESM run (Supplementary 
Material, Figure S2a) showed a distinct pattern from the 
Eta-HadGEM2-ES run (Spplementary Material, Figure S2b), 
which simulated the largest underestimation of maximum 
temperatures, it had close agreement with the Eta-MIROC5 
run (Supplementary Material, Figure S2c). The difference 
between the standard deviation from the reference data (3.2) 
and the simulation (approximately 4.8) is a direct consequence 
of the bias found (Figure 2b). Although the simulations do not 
show high dispersion among simulated and reference values in 
the Taylor diagram, the simulated temperature pattern differs 

from the reference by more than 2 °C. However, as with the 
near-surface temperature, there was high spatial correlation 
between reference and simulated maximum temperature, the 
highest with the three-member ensemble (0.92) and the lowest 
with Eta-BESM (0.89).

Precipitation
Precipitation was overestimated for this period in almost 

the entire basin (Figure 3a), with the highest positive bias in the 
west, over the Andes, with an overestimation of approximately 
7 mm day-1. The overestimation of precipitation is not unique 
to the Andes, extending to almost the entire area. The Eta-
BESM and Eta-HadGEM2-ES simulations showed similar 
behavior by simulating more than the observed precipitation 
(Supplementary Material, Figures S3a and S3b), with highest 
overestimation for Eta-BESM, concentrated in the central and 
western basin. The Eta-MIROC5, in turn, resulted in more 
areas with negative (dry) bias (Supplementary Material, Figure 
S3c) and was the closest to the observed precipitation pattern, 
as the south of the basin is drier in July-August-September, 
with higher precipitation in the central and northern regions. 

Figure 3. A – Precipitation bias (mm d-1) from CPC versus ensemble, for the dry period (July, August and September) in the Amazon basin from 1979 to 2005. Dotted 
regions are statistically significant at a 95% confidence level. B – Taylor diagram of the precipitation (mm d-1) for the dry period (July, August and September) in the Amazon 
basin from 1979 to 2005. The points from 1 to 4 are the different climate simulations and the red star is the reference data. This figure is in color in the electronic version.

Figure 2. A – Maximum temperature bias (°C) from CPC versus the ensemble, for the dry period (July, August and September) in the Amazon basin from 1979 to 
2005. Dotted regions are statistically significant at a 95% confidence level. B – Taylor diagram of the maximum temperature (°C) for the dry period (July, August and 
September) in the Amazon basin from 1979 to 2005. The points from 1 to 4 are the different climate simulations and the red star is the reference data. This figure is in 
color in the electronic version.
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In the Taylor diagram, the precipitation pattern simulated 
by Eta-BESM deviated more from the observed (reference) 
values (Figure 3b). Among the four simulations, the ensemble 
had the highest correlation with the reference values (0.70).

Keetch-Byram drought index
The KBDI showed a well-defined spatial bias distribution 

(Figure 4b). The ensemble tended to overestimate the KBDI in 
the central and northern basin, with higher values concentrated 
in the northeastern sector. In the southeastern basin and in 
the west, near the Andes, the bias was negative. The simulated 
KBDI higher than the observed in the northern and central 
basin despite positive bias for precipitation and negative bias 
for maximum temperature in this region (Figures 2a and 
3a). Even an overestimation of approximately 75 units in the 
KBDI in the northern region did not change the observed 
classification of fire risk (Figure 4a). The regions of low and 
high values for the KBDI calculated from the CPC dataset 
(Figure 4a) showed positive and negative bias, respectively 
(Figure 4b). The Eta-BESM run showed predominantly 
negative bias over the basin (Supplementary Material, Figure 
S4a, while the Eta-HadGEM2-ES run showed the highest 

positive bias among the models, and overestimated the KBDI 
for the entire basin except the Andes (Supplementary Material, 
Figure S4b). The Eta-MIROC5 run (Supplementary Material, 
Figure S4c) behaved similarly to the ensemble.

The number of consecutive dry days (CDD) reached 
more than 40 days of positive bias in the far northeast of the 
basin, while it was underestimated over the west, near the 
Andes, and southeast (Figure 5a), where the KBDI was also 
underestimated. 

The Taylor diagram for KBDI showed greatest dispersion 
among all variables (Figure 5b), reflecting the high variability of 
simulated KBDI patterns. The Eta-HadGEM2-ES simulation 
was the closest in standard deviations to the observed data and 
also showed the highest correlation with the reference values 
(0.70). The ensemble simulation (approximately 0.69) was 
very close to the Eta-HadGEM2-ES.

DISCUSSION
The simulations of the present climate have shown 

significant biases over the Amazon basin. The negative bias 
in near-surface temperature for the northern basin agrees 

Figure 5. A – Consecutive dry days bias from the CPC versus ensemble, for the dry period in the Amazon basin (July, August and September) from 1979 to 2005. 
B – Taylor diagram of the Keetch-Byram drought index for the dry period in the Amazon basin (July, August and September) from 1979 to 2005. The points from 1 to 
4 are the different climate simulations and the red star is the reference data. This figure is in color in the electronic version..

Figure 4. Keetch-Byram drought index calculated from the CPC dataset (A) and calculated from the CPC versus the ensemble data, for the dry period (July, August and 
September) in the Amazon basin from 1979 to 2005 (B). Dotted regions are statistically significant at a 95% confidence level. This figure is in color in the electronic version..
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with previous simulations using the Eta regional model in 
the Amazon region. Pesquero et al. (2010) used the Eta 
model nested within the HadAM3P model and also found 
underestimation of near-surface temperatures in June, July 
and August from 1961 to 1970. These coincident patterns 
could indicate that the underestimation of near-surface 
temperatures is generated by the Eta model irrespective of its 
boundary conditions. Furthermore, the prominent negative 
bias over the Andes can be related to a model response to 
the topographic configuration and the simulation of high 
orographic precipitation. The presence of regions where the 
bias value showed values of zero or very close to zero, however, 
show that the three-member ensemble is able to improve 
the results of simulations using individual variables. Despite 
the uncertainties in the simulations, the Taylor diagrams 
indicated that the Eta model is able to satisfactorily represent 
the near-surface temperature in the dry period in the Amazon 
basin. The underestimation of maximum temperatures over 
the entire basin agrees with Chou et al. (2014), who found a 
negative bias for the northern region in both the austral winter 
and summer, highlighting the tendency of the Eta model 
to underestimate maximum temperatures for the northern 
Brazilian Amazon. 

While there was an overestimation of precipitation for 
the entire basin, the bias was greater over the Andes. The 
presence of the Andes is one of the main driving factors of 
precipitation in the central and northwestern Amazon basin, 
as they cause upwards movement of moist air brought by the 
trade winds (Nobre et al. 1991). Our study confirms that the 
Eta simulations systematically generate errors in the Andes 
region, as already shown by Chou et al. (2012 and 2014), 
likely due to the lack of observational data for this region. 

In the Amazon, around 32% of the precipitation 
originates from the basin itself (Staal et al. 2018), therefore 
the overestimation of local sources of moisture by the Eta 
model ensemble could lead to increased simulated rainfall. 
Two moisture sources for precipitation were analyzed to 
understand this positive bias in precipitation, namely 
the evapotranspiration and the P-E (precipitation minus 
evapotranspiration), which indicates the moisture flux 
convergence (Marengo et al. 2012). We found a positive bias 
in simulated evapotranspiration and positive values of P-E 
mean moisture convergence over the region and the P-E was 
also overestimated over the basin. The behavior of these two 
moisture sources could explain the bias found in the simulated 
precipitation, in addition to the errors over the Andes.

The KBDI was overestimated in the central and northern 
Amazon basin, and underestimated in the Andes and in the 
southeast. The KBDI considers maximum temperature, 
precipitation and the accumulation of a deficiency in soil 
moisture to calculate the fire risk, therefore weather conditions 
from previous months influence the period evaluated (Liu 

et al. 2010). Our results suggest that the KBDI does not 
have a linear relationship with precipitation and maximum 
temperature. The bias pattern of the KBDI and the CDD 
were overlayed, as both were overestimated in the northeastern 
basin, and underestimated in the south. Likewise, in an Eta 
model forced by HadGEM2-ES for the period 1981-1990, 
CDD was overestimated in the northeastern region of the 
Amazon basin, and underestimated in the western and 
southern regions (Brito et al. 2019). Additionally, using the 
Eta model at 40 km resolution, Dereczynski et al. (2020) 
found that CDDs are reduced over the Amazon region. Thus, 
the nonlinear interactions among precipitation, temperature 
and CDD likely condition the biases found for the KBDI. 

The ensemble simulations seemed to represent KBDI values 
more accurately at the center, with a poorer representation of 
the extremes of the variable distribution. The ensemble showed 
less bias compared to the individual members, suggesting that 
using the ensemble method can improve the representation 
of the index and mitigate uncertainties in the simulation of 
the individual members. 

Fires in the Amazon Forest are heavily associated with 
deforestation and the process of slash-and-burning, when not 
used properly (Berenguer et al. 2014; Brando et al. 2014). 
As the KBDI only infers the fire risk through meteorological 
conditions (Gannon and Steinberg 2021), it may fail to 
identify areas that are more likely to present fire activity. While 
forest fragmentation, fuel and ignition are conditions for fire 
occurrence and spread (Nepstad 1999; Brando et al. 2019), 
the study of weather conditions that favor to fire activity is 
equally relevant, not only because fire activity increases in 
years of extreme drought in the Amazon (Aragão et al. 2014; 
Anderson et al. 2018; Silva Junior et al. 2019), but also 
because the Amazon forest is gradually losing its resilience 
to fire, such as the decrease in cold nights (Balch et al. 2022; 
Reboita et al. 2022).

CONCLUSIONS
The use of the Eta regional model over the Amazon basin 

to evaluate fire risk showed significant bias in all variables 
evaluated. The simulation using the ensemble of near-surface 
temperature, maximum temperature and precipitation showed 
improvements when compared to the simulations using 
individual members and, thus, is suggested as a method to 
better estimate the fire risk index and mitigate uncertainties 
in the simulations of the individual members. Our results 
indicate that the calculation of the KBDI in the Amazon 
basin is heavily dependent on how well the model simulate 
precipitation, more specifically the number of consecutive 
days without rainfall. The simplistic formulation of the KBDI 
facilitates its calculation and use for fire risk monitoring. 
In order to reduce the uncertainties of potential fire risk 
estimation over the region, the Eta model must improve 
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the simulation of the climate over the Andes and simulate 
more accurately the number of consecutive dry days over the 
entire Amazon region. Information on soil condition and 
the validation of the KBDI with satellite data on observed 
fires could increase the accuracy of the fire risk index in the 
Amazon basin. 
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Figure S1. Near-surface temperature bias (°C) for the dry period (July, August, 
and September) in the Amazon basin from 1979 to 2005 from ERA5 vs. Eta-BESM 
(A); vs. Eta-HadGEM2-ES (B); and vs. Eta-MIROC5 (C).

Figure S2. Maximum temperature bias (°C) for the dry period (July, August, and 
September) in the Amazon basin from 1979 to 2005 from CPC vs. Eta-BESM (A); 
vs. Eta- HadGEM2-ES (B); and vs. Eta-MIROC5 (C).
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Figure S4. KBDI bias calculated for the dry period (July, August and September) 
in the Amazon basin from 1979 to 2005 from CPC vs. Eta-BESM data (A); vs. Eta-
HadGEM2-ES data (B); and vs. Eta-MIROC5 data (C).

Figure S3. Precipitation bias (mm d-1) for the dry period (July, August, and 
September) in the Amazon basin from 1979 to 2005 from CPC vs. Eta-BESM (A); 
vs. Eta-HadGEM2-ES (B); and vs. Eta-MIROC5 (C).


