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ABSTRACT 
The Machado River is the main tributary of the Madeira River in the state of Rondônia, a region that has been impacted by 
deforestation, livestock, urban development, alluvial gold mining and urban and industrial effluents that likely contribute 
to the introduction of mercury (Hg) in the aquatic system. We aimed to determine the concentrations of total Hg (THg) 
in muscle and liver of Plagioscion squamosissimus, a main fishing resource in the region. Fish were sampled for two years at 
five sites, along a 90-km stretch of the middle Machado River. THg concentrations were analyzed in 64 muscle and 54 liver 
samples by cold vapor atomic absorption spectrophotometry (FIMS-400). THg levels were related with fish size and sex and 
with periods of the hydrological cycle. THg concentrations in both organs were positively and significantly related with fish 
body size. There was no significant variation in THg among periods of the hydrological cycle. Mean THg concentrations in 
muscle (1.09 ± 0.72 mg kg-1) and liver (1.28 ± 1.23 mg kg-1) were higher than the limit established by the WHO. Our results 
suggest that residual mercury from former alluvial gold extraction and lixiviation of mercury naturally occurring in the soil due 
to large-scale deforestaion is accumulating in the aquatic food chain in the Machado River. We conclude that it is necessary 
to monitor the levels of mercury in commercially important fish species in the region.

KEYWORDS: fish, heavy metal, Rondônia 

Mercúrio no músculo e fígado de Plagioscion squamosissimus 
(Acanthuriformes: Sciaenidae) do Rio Machado, Amazônia brasileira
RESUMO
O Rio Machado é o principal afluente do Rio Madeira no estado de Rondônia, uma região impactada por desmatamento, 
pecuária, desenvolvimento urbano, mineração de ouro e efluentes urbanos e industriais, que provavelmente contribuem para 
a introdução de mercúrio (Hg) no sistema aquático. Nosso objetivo foi determinar as concentrações de Hg total (THg) em 
músculo e fígado de Plagioscion squamosissimus, um importante recurso pesqueiro na região. Os peixes foram amostrados durante 
dois anos em cinco locais ao longo de 90 km no médio Rio Machado. As concentrações de THg foram analisadas em 64 
amostras de músculos e 54 de fígado por espectrofotometria de absorção atômica com vapor frio (FIMS-400). As concentrações 
de mercúrio foram relacionadas ao tamanho e sexo dos peixes, e com períodos do ciclo hidrológico. As concentrações de 



Costa et al. Mercury in Plagioscion squamosissimus

 61 VOL. 52(1) 2022: 60 - 68

ACTA
AMAZONICA

THg em ambos os órgãos foram relacionadas positiva e significativamente com o tamanho corporal dos peixes. Não houve 
variação significativa do THg entre os períodos do ciclo hidrológico. As concentrações médias de THg no músculo (1,09 ± 
0,72 mg kg-1) e no fígado (1,28 ± 1,23 mg kg-1) foram superiores ao limite estabelecido pela OMS. Os resultados sugerem 
que o mercúrio residual da extração de ouro e lixiviação de mercúrio que ocorre naturalmente no solo desmatado está se 
acumulando na cadeia alimentar aquática do Rio Machado. Concluímos que é necessário monitorar os níveis de mercúrio em 
espécies de peixes comerciais na região.

PALAVRAS-CHAVE: peixe, metal pesado, Rondônia

INTRODUCTION
Mercury concentrations found in different environmental 

matrices in the Amazon region, can be attributed to natural 
(Lacerda and Pfeiffer 1992) and anthropic origin, the main 
source being gold mining (Lacerda and Pfeiffer 1992; Bastos 
et al. 2006). During the burning of gold-mercury amalgam, 
Hg is volatilized and is transported via the atmosphere, 
contaminating rivers and soils in other regions (Lacerda and 
Salomons 1992; Hancon 1995). In the Machado River, a 
tributary of the Madeira River, which forms a major right-
margin subbasin of the Amazonas River in the southwestern 
Brazilian Amazon, alluvial gold extraction has also been 
recorded (CNEC 1985). The Madeira River is known for 
intensive gold extraction, maily in the 1970s and 1980s 
(Lacerda and Pfeiffer 1992; Bastos et al. 2006). The Machado 
River flows for 972 km from the central Brazilian Shield, 
through a region that has suffered high rates of slash and 
burn deforestation (Ferraz et al. 2005), along one of the main 
highways into the Amazon region (BR-364). Over 50% of 
the Machado River basin was deforested until 2019 (INPE/
Prodes 2019). Soil, unprotected as a result of desforestation, 
can contribute to entry of mercury into Amazonian aquatic 
ecosystems (Nascimento et al. 2020). At present, alluvial 
gold extraction is declining in the basin and has become rare 
(Rodrigues and Marta 2017). However, even where sediments 
contaminated with mercury have been removed to prevent 
methylation, the mercury used in gold amalgamation can 
still be found in high levels in rivers throughout the Amazon 
Basin (Mailman et al. 2006). 

The middle section of the Machado River passes through 
areas with medium to very high alteration, mainly pasture and 
soybean croplands and associated urban centers and industrial 
plants, such as tanneries, meat packing plants and dairy plants. 
The main sources of water contamination are domestic sewage 
and industrial wastewater, irregular trash dumps, and runoff of 
agricultural chemicals (Vasanthi et al. 2019), causing pollution 
by toxic substances, such as oil, grease, nitrogen, phosphorus 
and heavy metals, as well as pathogenic bacteria (Nunes and 
Jesus 2019). Among the heavy metals, mercury is found in 
the water, air, soil, sediments, plants and animals in organic 
forms (methylmercury, dimethylmercury), metallic form and 
as ionic mercury salts (Vasile et al. 2019). Mercury is a highly 
toxic pollutant due to its ability for bioaccumulation (Ferreira 
et al. 2015), mainly in aquatic ecosystems (Vasile et al. 2019). 

The toxic status of mercury depends on the chemical form 
that is absorbed by the organism, the organic forms being 
the most toxic (Ferreira et al. 2015; Milhome et al. 2018). 
In general, fish have an average methylmercury percentage 
relative to total mercury ranging from 97.3% in carnívorous 
fish to 96.4% in omnívoros fish (Kehrig and Malm 1999).

Some species of carnivorous fish are bioindicators of 
pollution in aquatic habitats and a source of food for other 
animals, as well as economically important fishing resources 
(Tacon and Metian 2009; Silva et al. 2019). Thus, it is 
important to determine concentrations of potentially toxic 
elements in their tissues (Milačič et al. 2019). The South 
American silver croaker, Plagioscion squamosissimus (Heckel, 
1840) is a sedentary fish native to the Amazon region (Santos et 
al. 2006). It is economically important in the region as a major 
protein source for local communities (Montes et al. 2011) and 
in recreational fishing (Barros et al. 2012). The species has a 
wide feeding spectrum (Hahn et al. 1999; Bennemann et al. 
2000; Bennemann et al. 2006; Santos et al. 2016), although 
it is mostly piscivorous (Hahn et al. 1997) or a generalist 
carnivore (Bennemann et al. 2011; Rocha et al. 2015; Neves 
et al. 2015). Due to its wide geographical distribution in 
the Amazon, abundance and tolerance to environmental 
stress in dammed river systems, and the relevance of studyng 
species on the top of the aquatic food chain (Custódio et al. 
2020), total mercury analysis of P. squamosissimus can help 
reveal important environmental features in tropical aquatic 
environments (Wunderlich et al. 2015).

The objective of this study was to analyze the total mercury 
concentration in P. squamosissimus in the Machado River, 
considering that, as a carnivorous species, it can accumulate 
high concentrations of mercury, wich can be transferred to 
humans through consumption. Mercury concentrations in 
muscle and liver were related to fish size and sex, and to periods 
of the hydrological cycle.  

MATERIAL AND METHODS
Study area

The study was carried out in the Machado River (also 
known as Ji-Paraná River). The Machado River Basin covers 
75,400 km2 in the state of Rondônia, Brazil (Figure 1). The 
river is formed by the Pimenta Bueno and Comemoração 
rivers (Krusche et al. 2005) and runs through the states of 
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Rondônia and Amazonas, Brazil. The hydrological regime is 
characterized by a flood peak in March and minimum ebb level 
in September (ANA 2020). It runs through the Jaru Biological 
Reserve (ReBio Jaru, Figure 1), which has a total area of 
47,733 km2 (ICMBIO 2010), with a conserved riparian 
zone covered by mostly open ombrophilous forest with low 
floristic variation (IBGE 1992). The preserved area along 
ReBio Jaru has a riverine zone constituted of shrubby and 
woody angiosperms (Supplementary Material, Figure S1a,b) 
that compose the primary forest (Supplementary Material, 
Figure S1c), which provides reproduction and feeding ground 
for fish and where fishing is prohibited (ICMBIO 2010). 
The unpreserved area outside ReBio Jaru is composed of 
pasture, with a riverine zone on the right bank composed of 
grasses, and a narrow strip with a few woody angiosperms and 
stretches of bushes on the left bank (Supplementary Material, 
Figure S1f ). In this area, there is fishing activity (artisanal 
and recreational and constant sand dredging (Supplementary 
Material, Figure S1d,e).

Fish sampling and biometric data
Samplings were carried out bimonthly from June 2013 

to April 2015 simultaneously at five sites along the Machado 

River. Three sites were located in ReBio Jaru (Carmita, Farofa 
and Suretama) and two sites (São Sebastião and Poção) outside 
ReBio Jaru (Figure 1). A total of 12 samples were taken (four 
samples in 2013, six in 2014 and two in 2015. Of these two 
samplings occurred during the rising water season, four during 
high water, two during subsiding water and four during low 
water. The hydrological periods were categorized based on 
ANA (2020). Average river depth is 11.4 m in high water 
season and 6.5 m in the low water season. Poção and São 
Sebastião are located, respectively, 50 and 5 km upstream 
of ReBio Jaru, while Carmita, Farofa and Suretama are at 
approximately 4 km from each other, making a total sampling 
distance of 90 km. At each site, eight sets of gillnets (2 x 20 
m with mesh sizes varying from 30 to 100 mm) were used. 
The sampling effort was standardized, and scientific capture 
was carried out for 24 hours continuously at each sampling 
site. The living specimens found at the end of the 24-hour 
period were sacrificed in a solution of clove oil (Eugenol, two 
drops per liter; according to the American Veterinary Medical 
Association 2001). One specimen was fixed in 10% formalin, 
subsequently preserved in 70% ethanol and deposited in 
the ichthyology collection at Rondônia Federal University 
(voucher nr. UFRO-ICT 023107).

For each specimen captured, the stantard length (SL) 
(in cm) was measured using an ichthyometer with 0.1 cm 
accuracy, and total wet weight (TW) (in g) was obtained with 
a digital scale with 0.01 g accuracy. The sex was determined 
through macroscopic gonad inspection (Vazzoler 1996; Nuñez 
and Duponchelle 2009), only adult individuals were analyzed. 
Samplings was authorized by Instituto Chico Mendes de 
Conservação da Biodiversidade - ICMBio (SISBIO licenses 
nr. 47345-1 and 40663-2). 

Chemical extraction for mercury quantification
All samples were transported on ice to the Environmental 

Biogeochemistry Laboratory at Universidade Federal de 
Rondônia (UNIR), where they were catalogued and stored in 
freezers until analysis. Total mercury was extracted according 
to Bastos et al. (1998). About 200 mg of muscle and liver tissue 
(ww) of each specimen were weighed separately in glass tubes 
and inserted into a block digester (Tecnal, TE-040/25) for 30 
min at 70 oC using 1.0 mL of H2O2 (Merck) and 4.0 mL of 
H2SO4:HN03 (1:1, Merck). Thereafter, 6.0 mL of KMnO4 
(5%, Merck) were added to each sample, which were than 
inserted into the bock digester at 70o.C for a further 20 min. 
After cooling the samples, droplets of HONH2.HCl (12%, 
Merck) were added and the final volume was completed to 15 
ml with ultra-pure water in Falcon tubes, where total Hg was 
measured by cold vapor atomic absorption spectrophotometry 
(CV-AAS, PerkinElmer FIMS-400 flow injection mercury 
system, Germany). All measurements were performed in 
triplicate and analyzed in parallel with internationally certified 
material (DORM-2, NRC-Canada) to ensure satisfactory 

Figure 1. Location of the study area in Rondônia state, northwestern Brazil and 
sampled stretch of the Machado River showing the sampling sites (see details in 
Figure S1). This figure is in color in the electronic version.
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quality control. The THg data were expressed relative to wet 
weight. Recovery rates were 102 ± 2% and detection and 
quantification limits were 0.018 mg kg-1 and 0.054 mg kg-1, 
respectively.

Data analysis
The Shapiro-Wilks and the Levene test were used to 

analyze the normality and homoscedasticity of the data and 
determine the application of parametric tests (ANOVA and 
t-test) (Zar 1996). Length and weight were compared between 
males and females using t-tests. Mercury concentration in 
muscle and liver tissue was compared between males and 
females, and between hydrological periods of the Machado 
River using two-way ANOVA. The relation between mercury 
concentration in muscle and liver and the length (cm) and 
weight (g) of the P. squamosissimus individuals was evaluated 
with linear regression. All statistical analyses were performed 
in R version 3.3.3. (R Core Team 2017). In all analyses, results 
were considered significant at p ≤ 0.05.

RESULTS
A total of 65 P. squamosissimus individuals (SL = 55.0 

± 8.3, SLMin = 16.5 cm, SLMax = 68.5 cm; tW = 2626 ± 
879 g, TWMin = 85 g, TWMax = 4200 g) were used for THg 
measurement in muscle tissue and 55 for liver tissue. Some 
liver samples were lost due to logistical problems. The average 
concentration of THg was 1.09 ± 0.72 mg kg-1 in muscle and 
1.28 ± 1.23 mg kg-1 in liver.

Average length and weight of the males was 47.5 ± 7.3 
cm (SLMin = 16.5 cm, SLMax = 68.5 cm) and 2618 ± 893 g 
(TWMin = 85 g, TWMax = 4200 g), respectively. For females, 
average length was 49.0 ± 5.0 cm (SLMin = 38.0 cm, SLMax 
= 55.0 cm), and weight was 2658 ± 856 g (TWMin = 1200 
g, TWMax = 4135 g). No significant differences occurred in 
length (t = 1.77; df = 1; p = 0.10), and weight (t = 1.27; df 
= 1; p = 0.22) between males and females, as well as in THg 
concentration in muscle and liver (ANOVA, F = 0.48; df = 
3; p = 0.48) (Figure 2).

Ther was a positive and significant regression of THg in 
muscle (r2 = 0.37; p = 0.008; n = 64) (Figure 3a) and liver (r2 
= 0.18; p = 0.04; n = 55) (Figure 3c) on total length, and also 
of THg in muscle (r2 = 0.29; p = 0.04; n = 64) (Figure 3b) and 
liver (r2 = 0.33; p = 0.04; n = 54) (Figure 3d) on total weight.

The regression THg concentration in muscle and liver was 
positive and significant (r = 0.83; p < 0.0001; n = 52) (Figure 
4). The THg concentration in muscle and liver did not vary 
significantly between the periods of the hydrological cycle 
(ANOVA, F = 1.43; df = 3; p = 0.23) (Table 1). 

DISCUSSION
Average THg concentration in muscle and liver of P. 

squamosissimus was above the limit of 0.50 mg.kg-1 established 
for human consumption (WHO 2019) for both sexes and 
throughout the hydrological cycle. Similar results were 

Figure 2. THg concentration in muscle (Mu) and liver (Li) of Plagioscion 
squamosissimus males (M) and females (F) sampled in the Machado River (Brazilian 
Amazon). The square indicates the median, the box the 25 and 75 percentiles, the 
bars the range, and the circles represent data points considered to be outliers.

Figure 3. Linear regression of total Hg concentration in muscle (A, B) and liver 
(C, D) on standard length (A, C) and weight (B, D) of Plagioscion squamosissimus 
sampled in the Machado River (Brazilian Amazon).

Figure 4. Regression analysis of total Hg concentration in muscle on total Hg 
concentration in liver in 52 individuals of Plagioscion squamosissimus sampled in 
the Machado River (Brazilian Amazon).
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obtained in other studies in the Amazon region (e.g. Bastos 
et al. 2008; Sampaio da Silva et al. 2013; Azevedo-Silva 
2016), yet our sample size (n = 65) was more representative 
than the average sample size in the mentioned studies (30.4 
± 29.8). The mercury concentrations found in our study 
were higher than in other studies carried out in the Amazon 
basin (Table 2).

As in the studies of Bastos et al. (2015, 2016) and Pecoraro 
et al. (2019), there were no significant differences in the 
THg concentration of males and females in our study. THg 
accumulation in fish depends on the trophic level of the 
focal species (Romanuk et al. 2011). The trophic level of P. 
squamosissimus is between 3.4 and 3.6 (Costa and Angelini 
2020). There are indications of the existence of only small-
scale artisanal mining of gold and cassiterite outside the Jaru 
Biological Reserve (J.P.O. Gomes, JBR management, pers. 

comm.). Thus, it is likely that the Hg found in the fish is 
mainly of natural origin, i.e., from the Hg naturally present 
in Amazonian soils (Bastos et al. 2007; Rua-Ibarz et al. 2019), 
which reaches the rivers through leaching from the soil in 
deforested areas. 

The measurement of THg concentration in body tissues 
provides important information for biological monitoring 
programs, but the analyses are expensive and laborious. 
Muscle is usually the target tissue to detect accumulation 
of methylmercury (MeHg) and the reservoir of highly toxic 
mercury species, but is not a good tissue to measure deposition 
of inorganic Hg (iHg) (Régine et al. 2006). Muscle tissue 
has a slower response to changes in Hg concentrations in the 
environment since it reflects the accumulation of Hg during 
a long exposure period, making it less sensitive to short-term 
changes of environmental Hg levels (Xu et al. 2015). In 

Hydrological 
period N Standard length

(cm)
Total weight

(kg) N THg muscle
(mg kg-1) N THg liver

(mg kg-1)

Rising water 34 49.3 ± 0.9 (48.7 - 50.0) 2.41 ± 0.12 (2.27 - 2.50) 19 1.32 ± 0.72 (0.09 - 2.73) 15 1.78 ± 1.55 (0.07 - 5.48)

High water 27 45.7 ± 5.4 (36.0 - 55.5) 2.06 ± 0.79 (0.95 - 0.41) 17 0.67 ± 0.40 (0.20 – 1.20) 10 2.03 ± 2.25 (0.44 - 6.52)

Subsiding water 19 46.1 ± 8.9 (15.2 - 54.0) 2.57 ± 0.89 (0.08 - 4.20) 9 0.69 ± 0.31 (0.35 - 1.13) 10 0.41 ± 0.12 (0.27 - 0.60)

Low water 40 50.1 ± 3.9 (41.1 - 55.5) 2 .90 ± 0.64 (1.80 - 4.00) 20 0.87 ± 0.52 (0.17 - 1.92) 20 1.17 ± 0.69 (0.30 - 2.45)

Overall 120 52.1 ± 8.4 (15.2 – 55.5) 2.66 ± 0.87 (0.08 - 4.20) 65 1.09 ± 0.71 (0.09 – 2.73) 55 1.27 ± 1.24 (0.07 - 6.52)

Table 1. Biometrical data and total mercury (THg) concentration in muscle and liver of Plagioscion squamosissimus in different periods of the hydrological cycle in the 
Machado River, Rondônia state, Brazil. Values are the mean ± standard deviation followed by the range (in parentheses).

River N (M/F) Length (cm) Weight (kg) Hydrological period THg (mg kg-1) Reference

Machado 65 (51/14) 57.0 (16.5 - 68.5) 2.62 (0.08 - 4.20) R, H, S, L 1.09 (0.09 - 3.30) this study

Madeira 2 ND ND R, H, S, L 0.62 (0.15 - 1.10) Oliveira et al. (2010)

Madeira 5 29.6 (27.0 - 33.0) ND ND 0.41 (ND) Azevedo-Silva (2016)

Madeira 72 180.0 (ND) ND R, H, S, L 0.24 (0.01 - 1.32) Bastos et al. (2015)

Madeira ND ND ND ND >0.50 Bastos et al. (2006)

Madeira 81 (39/42) ND ND R, H, S, L <0.50  Bastos et al. (2016)

Madeira and Jamari 41 ND ND R, H, S, L 0.44 (0.00 - 1.10) Bastos et al. (2008)

Madeira and Roosevelt 2 48.5 (ND) 2.32 (ND) ND <0.50 Anjos et al. (2016)

Manacapuru Lake 12 ND ND R, H, S, L 0.54 (0.17 - 0.97) Beltran-Pedreros et al. (2011)

Tapajós 50 ND ND R, S 0.59 (ND)  Sampaio da Silva et al. (2009)

Purus 3 ND ND L 0.61 (0.31 - 0.86) Castro et al. (2016)

Madeira 41 ND ND S 0.33 (ND)  Sousa et al. (2015)

Tapajós 69 (12.1 - 40.0) ND R, L 0.57 (0.13 - 2.94) Da Silva et al. (2013)

Cassiporé 14 40.0 (ND) 0.84 (ND) H, L 0.50 (ND) Lima et al. (2015)

Beni 4 ND ND ND 0.66 (ND) Rivera et al. (2016)

Amazon Region ND ND ND ND 1.10 (ND) Bittarello et al. (2019)

Amazon and Tapajós ND ND ND ND 1.81 (ND) Bourdineaud et al. (2015)

Table 2. Data on mercury concentration in muscle (relative to wet weight) of Plagioscion squamosissimus sampled in several rivers of the Amazon basin over 14 
years. N = sample size (values in parentheses indicate number of males/females, if available). Length (standard length) and weight values are the median (minimum 
- maximum). Hydrological period: R = rising water; H = high water; S = subsiding water; L = low water. Biometrical and mercury values are the mean followed by the 
range in parentheses, when available. ND = not determined.
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contrast, liver tissue is highly responsive to exposure to iHg 
and is the best target tissue for detection of short-term changes 
in contamination, because the liver is able to accumulate 
higher Hg concentrations than other tissues (Rua-Ibarz et 
al. 2019). The liver has an important function in the process 
of detoxification and metabolism of Hg, and is one of the 
main organs responsible for demethylation of MeHg and 
subsequent redistribution of the two main forms of Hg (Rua-
Ibarz et al. 2019). Hence, the iHg in the liver can originate 
from direct capture by the organism and/or demethylation of 
MeHg (Rua-Ibarz et al. 2019). Changes in Hg exposure are 
generally reflected in the concentration in liver tissue before 
other organs and tissues, such as muscle (Xu et al. 2015). 

The Hg concentration in our study showed no seasonal 
variation. The hydrological cycle and levels of anthropic 
activity in the basin can affect the transport and availability 
of Hg in aquatic environments (Squadrone et al. 2013). The 
increased rainfall during the rising water and high water 
periods can be an additional factor for the increase of Hg 
in the region, since this trace element can be released into 
the atmosphere and fall back to earth in rainwater, reaching 
various areas of the basin (Veiga and Hinton 2002). Rain 
can therefore contribute to the remobilization of Hg in the 
substrate of aquatic habitats (Moreno-Brush et al. 2016), 
increasing its availability in the environment. 

The hydrological cycle of the rivers also influences the 
dynamics of gold mining in the Amazon basin, because the 
gold is alluvial. Low water level makes gold mining more 
difficult, so miners tend to interrupt their activity in the low 
water season, thus reducing the discharge of Hg and exposure 
to fish (Soares et al. 2018). No significant differences in the 
concentration of Hg in carnivorous fish species (Serrasalmus 
spp, Hoplias malabaricus (Bloch 1794) and Cichla spp) 
were found between the low water and high water seasons 
in the Negro River (Dorea et al. 2006), nor in carnivorous/
piscivorous species (Serrasalmus spp, Pinirampus pirinampu 
(Spix & Agassiz, 1829) and Cichla spp) in the Madeira River 
(Bastos et al. 2007). In places that have high Hg levels in the 
soil and high potential for methylation and deterioration of 
biomass, as found in the Amazon region, the interactions 
between species occur in all periods of the hydrological cycle, 
but do not alter the general state of bioaccumulation of Hg 
by fish (Bastos et al. 2007).

The complex trophic interactions (trophic plasticity, 
feeding selectivity, amplitude and overlap of food 
niches) among species, as well as their variability in Hg 
bioaccumulation patterns in high and low water periods 
(Bastos et al. 2007), can explain the absence of significant 
differences in THg concentrations between the periods of 
the hydrological cycle in our study. In the rising water and 
high water seasons, when average THg concentrations were 
also above the recommended limit (WHO 2019), spawning 

activity occurs in P. squamosissimus. The exposure of fish to 
Hg can compromise the reproduction, growth and immunity 
(Graves et al. 2017). Embryos and fingerlings exposed to Hg 
can develop abnormalities, changes in behavior and delayed 
development, reducing the chances of survival (Weis 2009). 

The THg concentrations in most of the P. squamosissimus 
specimens were above the level allowed for the consumption 
of meat from predatory fish by humans by Brazilian legislation 
(1.0 mg kg-1) (Brasil 1998) and above the limit established 
for fish consumption by the WHO (0.50 mg kg-1) (WHO 
2019). Mercury intoxication can cause various disturbances 
in humans, especially in vulnerable groups such as babies, 
children and pregnant women (Fuentes-Gandara et al. 
2018). Mercury can affect humans at different biological 
levels, causing considerable damage to the central nervous 
system and kidneys (Beckers and Rinklebe 2017). Plagioscion 
squamosissimus is widely consumed by the urban and rural 
population of the central region of Rondônia state, with 
relevant economic importance in regional trade. Therefore, 
it is necessary to monitor the Hg levels in this fish species on 
a regular basis.

CONCLUSIONS
The average mercury concentrations in the muscle and 

liver tissues of Plagioscion squamosissimus sampled in the 
Machado River were above the limits established by the WHO 
for human consumption. Since muscle tissue is the main 
part consumed, the results of this study are of great interest 
for analysis of regional food safety, mainly with regard to the 
different chemical species of Hg. However, we emphasize that 
no significant differences were found in the concentration of 
mercury between muscle and liver, between sexes and among 
the annual hydrological periods. We highlight that elemental 
analyses are necessary, involving species and isotopes of Hg 
(1) in different fish species in the watershed, (2) in the same 
species in different places, (3) at different trophic levels, and 
particularly (4) in different tissues of the same species, to 
configure a robust approach to understand this important 
threat to the enviornment and human health.
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SUPPLEMENTARY MATERIAL (only available in the electronic version)
Costa et al. Mercury in muscle and liver of Plagioscion squamosissimus (Acanthuriformes: Sciaenidae) from the Machado 
River, Brazilian Amazon

Figure S1. Sampling sites in the Machado River, Rondônia state, Brazil: A – Carmita; B – Farofa; C − Suretama (preserved area); D − São Sebastião, sand dredging activity; 
E and F − (S1F) Poção, pasture, few woody angiosperms and stretches of bushes, degraded local banks (unpreserved area). 


